Konsep Pemecahan Integral -Pernahkah kalian melihat baling-baling pesawat? Bagaimanakah
bentuknya? Ketika pesawat hendak mengudara, baling-baling
pesawat akan berputar dengan kecepatan tinggi. Bagaimanakah
bentuk baling-baling itu saat berputar? Saat baling-baling berputar,
kalian akan mengamati sebuah bentuk seperti lingkaran. Dapatkah
kalian mengetahui luas lingkaran yang terbentuk dari perputaran
baling-baling itu? Dengan menggunakan integral, kalian akan dapat
mengetahuinya.
A. PENGERTIAN INTEGRAL
Kita telah mempelajari konsep turunan di kelas XI.
Pemhaman tentang konsep turunan ini dapat kita gunakan untuk memahami
konsep integral. Untuk itu, coba tentukan turunan fungsi-fungsi berikut.
Perhatikan bahwa fungsi-fungsi tersebut memiliki bentuk umum f(x) = 3x+ c , dengan c adalah suatu konstanta. Setiap fungsi ini memiliki turunan f '(x) = 9x. Jadi, turunan fungsi f(x) = 3x+ c adalah f '(x) = 9x.
Sekarang, bagaimana jika kita harus menentukan fungsi f(x) dari f '(x) yang diketahui? Menentukan fungsi f(x) dari f '(x), berarti menentukan antiturunan dari f '(x). Sehingga, integral merupakan antiturunan (antidiferensial) atau operasi invers terhadap diferensial.
Pengintegralan fungsi f(x) terhadap x dinotasikan sebagai berikut:
dengan:
=
|
notasi integral (yang diperkenalkan oleh Leibniz, seorang matematikawan Jerman) | ||
f(x) |
=
|
fungsi integran | |
F(x) |
=
|
fungsi integral umum yang bersifat F'(x) = f(x) | |
c |
=
|
konstanta pengintegralan |
Sekarang, perhatikan turunan fungsi-fungsi berikut:
Sebagai contoh, turunan fungsi f(x) = 3x + c adalah f'(x) = 9x. Ini berarti, antiturunan dari f'x = 9x adalah f(x) = 3x + c, atau dituliskan f'(x) dx = 3x + c.
Uraian ini menggambarkan hubungan berikut.
Sumber : http://www.ittelkom.ac.id/admisi/elearning/ Rating: 5
{ 0 komentar... read them below or add one }
Posting Komentar
Blog Ini Bersifat Do Follow yg Berarti dpt Memberikan Backlink Gratis Kpd Blog Anda Jika Berkomentar Dibawah ini :
"Komentar Harus Bersifat Membangun Dan Tidak Menjatuhkan akan Kami Hargai"